

The Effect of Understanding and Awareness of Class Facilities and Infrastructure Removal on The Learning Experience of Educational Management Students, UNESA, Class of 2024 E

Junivan¹, Galih Rachmad Pratama², Fitriya Helen Anggraeni³, Rosyadatus Sabilah⁴

^{1,2,3,4}State University of Surabaya, Indonesia

DOI : -

Sections Info

Article history:

Submitted: September 10, 2025
Final Revised: September 25, 2025
Accepted: October 02, 2025
Published: October 24, 2025

Keywords:

Learning Comfort
Facilities and Infrastructure
Educational Management
Student Awareness
Simple Linear Regression

ABSTRACT

Objective: This study aims to examine the effect of understanding the awareness of classroom Facilities and Infrastructure on the learning comfort of students in the Educational Management Study Program at Surabaya State University (UNESA), class 2024 E. **Method:** A quantitative research approach was employed, utilizing validity, reliability, normality, linearity, and simple linear regression tests. Data were collected via a questionnaire, with a sample size of 41 students. **Results:** The results showed that both variables (X and Y) were valid, with R calculations exceeding the threshold (R Table = .308). The reliability test indicated high consistency (X = 0.976, Y = 0.963). The normality test after data transformation (SQRT) showed that data became normal (sig. 152). The linearity test (sig. 179) confirmed a direct relationship between X and Y. The regression analysis revealed significant results (FCount = 112.957 > FTable = 4.09; TCount = 10.628 > TTable = 1.658), with B = 0.793, indicating a positive influence of awareness of infrastructure on learning comfort. **Novelty:** This study offers valuable insights into how student awareness of classroom facilities influences their learning environment, with significant implications for higher education management practices.

INTRODUCTION

Educational facilities and infrastructure are essential components in supporting a comfortable and effective learning process. Educational facilities and infrastructure encompass all equipment and supplies directly used to support the educational process, particularly teaching and learning activities within educational institutions. At the university level, adequate facilities such as suitable classrooms, sturdy and functional chairs and tables, and optimal ventilation and lighting systems play a crucial role in supporting student comfort during lectures.

In the context of facility and infrastructure management, it is stated that such management includes stages, one of which is disposal [1]. One important stage that is often overlooked is the disposal process, which involves removing items that are no longer suitable for use or no longer support the learning process. This disposal is crucial to ensure that damaged items do not disrupt the comfort and effectiveness of learning. With a learning environment free from obsolete or damaged equipment, students can feel comfortable and focused on their learning activities.

However, in this case, the removal of infrastructure will certainly never be implemented effectively if the relevant parties lack an understanding of the importance of eliminating facilities and infrastructure, especially for students' learning needs in the classroom. Students, as the direct users of facilities and infrastructure, are directly

impacted if the removal is not based on these considerations, particularly regarding the comfort of learning. Experience can be derived from students' knowledge of the factors underlying these experiences.

Based on this description, the researcher is interested in further examining how students' understanding of the removal of classroom facilities and infrastructure influences their comfortable learning experience in the classroom. This research focuses on students in the 2024E class of the Educational Management study program at Surabaya State University.

Theoretical Review

Removal of Facilities and Infrastructure

The removal of facilities and infrastructure has several underlying aspects. One is the alignment of direction and objectives through management theory. In this case, the Controlling section of George R. Terry's POAC Management theory is aimed at controlling and ensuring the management process, which includes a key point, namely Supervision, in an effort to minimize failures in achieving Quality Standards [2].

A crucial aspect of the procedures for implementing infrastructure removal is that they must be firmly grounded in established and mutually agreed-upon Standard Operating Procedures (SOPs). This procedure must be accountable for each process, as well as adequate administrative completeness to ensure a strong basis for identification [3]. Based on the two statements above, several indicators that can be key points in formulating statements are:

1. Intensity of Condition Monitoring;
2. Functional Suitability;
3. Security Condition of Physical Facilities;
4. Compliance with Regulations & SOPs; and
5. Administrative Completeness.

Learning Comfort

Learning comfort has several aspects that underlie the perceived experience. This relates to Maslow's Hierarchy of Needs theory. In this case, the aspects considered are physical safety and a stable environment to allow students to feel secure in their surroundings [4].

Cleanliness and tidiness can create a comfortable learning environment in the classroom. In this case, tidiness and cleanliness refer to how the room is properly arranged and the absence of non-functional furniture that takes up space and makes the room feel dirty. In addition to these aspects, aspects related to psychological well-being, created through ease of interaction, can also be a driving factor in creating a comfortable learning environment in the classroom [5].

Classroom layout is also a crucial factor in creating a comfortable learning environment, especially within the classroom. In this regard, the mobility and circulation of students and teachers/lecturers are prioritized [6]. Based on several statements from

the theories and researchers above, several indicators that can be key points in forming statements are:

1. Potential Physical Hazards to Infrastructure
2. Stable Environmental Conditions of Infrastructure
3. Availability of Infrastructure
4. Cleanliness of Classrooms
5. Physical Condition of Classroom Infrastructure
6. Conduciveness of Interaction
7. Accessibility and Flexibility
8. Classroom Circulation

RESEARCH METHOD

The data obtained came from a questionnaire containing 32 statements for X and 23 for Y. The data collection technique used stratified probability, with a population of 41 samples, all in the same group, Class 2024 E, with very little potential for error in generalizing the data [7].

The population of this study consisted of Management students from Surabaya State University, Class 2024, Class E. The sample in this study was 41 students enrolled in the Statistics course.

The variables in this research problem formulation consist of Understanding Awareness of the Removal of Facilities & Infrastructure (X), which focuses on Controlling & Procedures for Removal [8]. The variable Student Learning Comfort Experience (Y) relates to physical and psychological safety and harmonious relationships [4].

The measurement scale used was a Likert scale of 1-4, with 32 statements for X and 23 for Y. The statement instruments were adapted from the Controlling & Procedures for Removal theory for (X) and physical and psychological safety and harmonious relationships for (Y).

The data collection technique used was a questionnaire adopted from a statement instrument, which was then completed by students. It was then tested using Validity, Reliability, Normality, Linearity, Homoscedasticity, and Simple Regression.

RESULTS AND DISCUSSION

Results

Validity Test

This test aims to measure the effectiveness and accuracy of the questionnaire in collecting data. This test is useful for research with multiple statement instruments to ensure the validity of the research instrument in describing the variables being measured. The test begins by calculating the R Table (Item Correlation Value) [9].

The R Table is determined using $n-2 = 41-2$, which is 39. After obtaining the n value, the next step is to compare the R Calculation using a comparison table according to the target error margin of 0.5%.

Tabel R-Hitung (lanjutan)					
DF = n-2	0,1	0,05	0,02	0,01	0,001
39	0,2605	0,3081	0,3621	0,3978	0,4950

The threshold value obtained is 0.308, which will be the basis for declaring the test invalid if $R_{Table} < 0.308$.

After obtaining the error limit for the validity R_{Table} , the next step is to calculate the Pearson Correlation value for each variable using SPSS. The final output from SPSS is as follows:

Variable	Indicators	Item	Rhitung	Rtabel	Sig.	Result
X	Intensity of Condition Monitoring	x1	.708	.308	.000	Valid
		x2	.829	.308	.000	Valid
		x3	.746	.308	.000	Valid
		x4	.765	.308	.000	Valid
		x5	.645	.308	.000	Valid
		x6	.805	.308	.000	Valid
		x7	.487	.308	.000	Valid
	Functional Suitability	x8	.621	.308	.000	Valid
		x9	.595	.308	.000	Valid
		x10	.706	.308	.000	Valid
		x11	.811	.308	.000	Valid
		x12	.846	.308	.000	Valid
		x13	.730	.308	.000	Valid
		x14	.749	.308	.000	Valid
	Physical Facility Security Condition	x15	.745	.308	.000	Valid
		x16	.823	.308	.000	Valid
		x17	.802	.308	.000	Valid
		x18	.748	.308	.000	Valid
		x19	.801	.308	.000	Valid
		x20	.806	.308	.000	Valid
		x21	.757	.308	.000	Valid
	Compliance with Regulations & Standard Operating Procedures	x22	.750	.308	.000	Valid
		x23	.661	.308	.000	Valid
		x24	.836	.308	.000	Valid
		x25	.806	.308	.000	Valid
		x26	.778	.308	.000	Valid
		x27	.795	.308	.000	Valid
		x28	.813	.308	.000	Valid
		x29	.825	.308	.000	Valid

Variable	Indicators	Item	Rhitung	Rtabel	Sig.	Result
Administrative Completeness		x30	.800	.308	.000	Valid
		x31	.838	.308	.000	Valid
		x32	.819	.308	.000	Valid

The X Total Output shows that the R count for each statement is not below R_{table} .308, meaning that the X Instrument is valid for measuring the level of confidence in each test statement on the indicator.

Variabel	Indicators	Item	Rhitung	Rtabel	Sig.	Result
Y	Potential Physical Hazards to Infrastructure	y1	.710	.308	.000	Valid
		y2	.784	.308	.000	Valid
		y3	.682	.308	.000	Valid
Y	Stable Infrastructure Environment	y4	.837	.308	.000	Valid
		y5	.629	.308	.000	Valid
		y6	.546	.308	.000	Valid
Y	Availability of Infrastructure	y7	.880	.308	.000	Valid
		y8	.759	.308	.000	Valid
		y9	.821	.308	.000	Valid
Y	Classroom Cleanliness	y10	.736	.308	.000	Valid
		y11	.750	.308	.000	Valid
		y12	.628	.308	.000	Valid
Y	Physical Condition of Classroom Infrastructure	y13	.762	.308	.000	Valid
		y14	.666	.308	.000	Valid
		y15	.844	.308	.000	Valid
Y	Conduciveness of Interaction	y16	.749	.308	.000	Valid
		y17	.846	.308	.000	Valid
		y18	.855	.308	.000	Valid
Y	Accessibility and Flexibility	y19	.708	.308	.000	Valid
		y20	.826	.308	.000	Valid
		y21	.694	.308	.000	Valid
Y	Classroom Circulation	y22	.648	.308	.000	Valid
		y23	.810	.308	.000	Valid

The Y Total output shows that the calculated R for each statement is not less than the R table of .308, meaning that the Y instrument is valid for measuring the level of confidence in each test statement on the indicator.

The statements from both instruments are validly distributed, so they can be used to describe the available variable data.

Reliability Test

The reliability test aims to measure the level of confidence in the instrument. This test aims to assess the consistency of the data produced as a basis for confidence that the instrument is consistently positive/negative in its measurements and not simply the result of chance [10].

The error limit for the reliability test is 0.5%. After obtaining the error limit, the next step is to calculate the SPSS output in the Reliability Statistics table. In this table, the Cronbach's Alpha is displayed. Both instruments were tested to determine their reliability. The following is the SPSS output for both instruments:

Reliability Statistics

Cronbach's Alpha	N of Items
.976	32

Based on the results of the X output, it is known that the Cronbach's Alpha value is .976, meaning that more than .005 indicates that the X instrument is reliable.

Reliability Statistics

Cronbach's Alpha	N of Items
.963	23

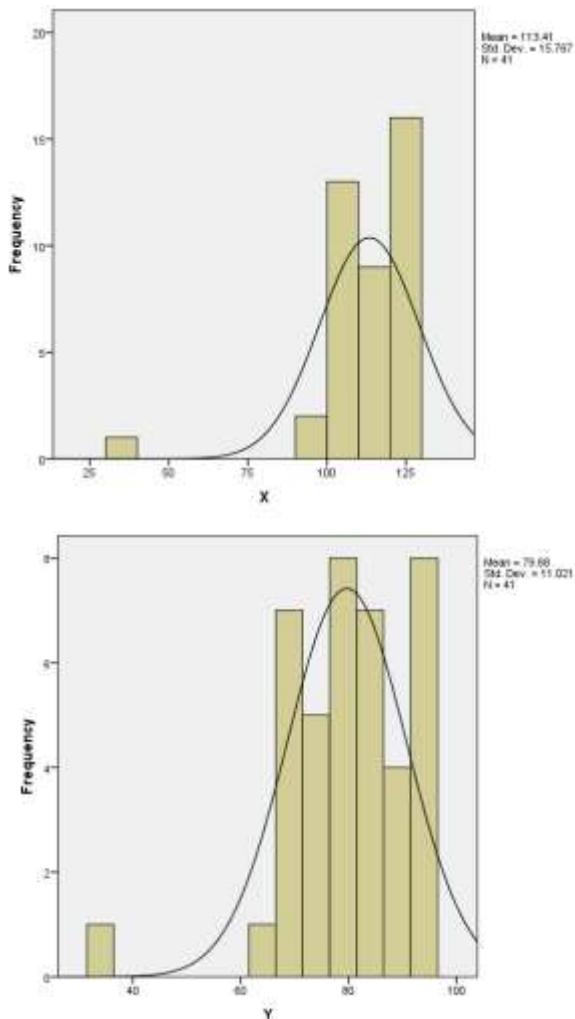
Based on the results of the Y output, the Cronbach's Alpha value was .963, meaning greater than .005 indicates that the Y instrument is reliable.

Based on the reliability test results, both variable instruments were found to be reliable, ensuring that the data are consistent and positive in measuring the proposed hypothesis.

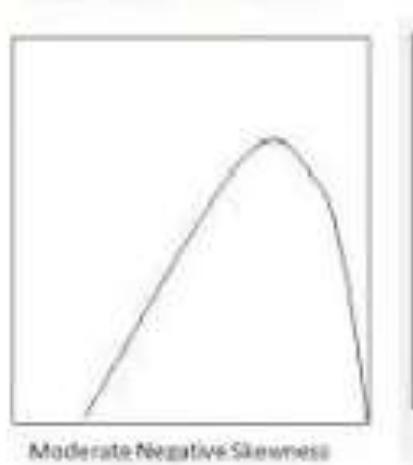
Normality Test

This test is part of the classical assumption test to facilitate conclusion-making for parametric tests and conclusion-drawing. In the normality test, the type of test depends on the sample size. The sample size in this study was 41, less than 50, which means it would be better to use the Shapiro-Wilk test to determine the significance of the data normality [11]. To assess normality, Excel and SPSS are required to manage the data. The raw data X and Y are output as the sum of all numbers per sample. The formula for using it in Excel is $X1-41 = \text{SUM} (N1 + N2 + N3....N32)$. Meanwhile, $Y1-41 = \text{SUM} (N1 + N2 + N3....N23)$.

After obtaining the overall results of the sample data per individual using SUM, the next step is to convert the X and Y variables into residuals in SPSS. Once the residuals are obtained, the next step is to test the data for normality. Data is considered normal if the margin of error is greater than 0.005, or 0.5%, meaning the data is normally distributed. The output for data normality is as follows:


Tests of Normality						
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.160	41	.010	.895	41	.001

a. Lilliefors Significance Correction


The Shapiro-Wilk results show a sig. 0.001, meaning the data is still below 0.005, indicating that the data is not normal.

Data Transformation

The data is still below 0.005 for the normality test, which does not meet the requirements for parametric testing, as parametric testing indicates that the data is normal. Therefore, to address this issue, data transformation is necessary to determine the data distribution is normal. For this data distribution, SPSS is required for processing, and the aspect of concern is identifying the normal form of the data histogram. The following is a presentation of the available data histogram:

The two data points above indicate a sloping rightward trend, indicating moderate negative skew. The following figure and formula are used to transform the data:

Moderate Negative Skewness indicates that the data is spread out to the right. Data X and Y tend to be centered to the right, where X, whose center is 75-80, has a mean center at 113.41, and Y, whose center is 60-65, has a mean center at 79.68, indicating that both data can be transformed using the Moderate Negative Skewness formula. The following are the types of data transformation formulas used in SPSS:

Bentuk Histogram	Jenis Transformasi
Moderate Positive	SQRT (x)
Substansial Positive	Ln(x)
Substansial Positive jika data mengandung nilai 0	Ln(x+1)
Severe Positive	1/x
Severe Positive jika data mengandung nilai 0	1/(x+1)
Moderate Negative	SQRT (k-x)
Substansial Negative	Ln (k-x)
Severe Negative	SQRT (k-x)

Keterangan: k = konstanta yang berasal dari setiap skor dikurangkan
sehingga skor terkecil adalah 1

The formula that can be used in Transform data in SPSS is SQRT (K-X/Y). In this case, K is the highest value per variable minus the overall value of the sample in the Variable. Both data in the variables are transformed with this formula to produce the output data SQRT_X1 and SQRT_Y1. After obtaining the Transformed data, the next step is to create residuals based on the existing transformed data, after forming the residual data, the next step is to test the normality of the transformed residual data in SPSS. The following data is obtained:

Tests of Normality						
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.110	41	.200*	.960	41	.152

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

The sig data shows a value of .152, which is greater than .005, indicating that the data is normally distributed after transformation and meets the requirements for advanced parametric testing.

Linearity Test

Linearity analysis is the initial step to ensure that a regression test can be implemented. The linearity test aims to ensure that the data in variables (X) and (Y) are directly related. In this case, changes in the data in the independent variable have a direct impact on the dependent variable, forming a continuous data line. This test is essential in influence tests because it measures the direct relationship between the two data points, whether they are linear or not. In the linearity test, the margin of error is 0.5% or .005 of the sig value. Anything less than this value is considered nonlinear, and vice versa. Data processing uses SPSS. The data to be processed must be transformed data that meets the assumption of normality, as the linearity test assumes normal data for testing. The following is the resulting data output:

ANOVA Table						
			Sum of Squares	df	Mean Square	F
SQRT_Y1 * SQRT_X1	Between Groups	(Combined)	124.259	22	5.648	8.103
		Linearity	101.694	1	101.694	145.893
		Deviation from Linearity	22.564	21	1.074	1.541
	Within Groups		12.547	18	.697	
	Total		136.806	40		

In the ANOVA output table above, we see the sig. value of the Deviation from Linearity. The results show a value of .179, which is greater than .005. Therefore, it can be concluded that Awareness of Classroom Infrastructure Removal (X) is linearly related to the data from Student Learning Experience (Y). Therefore, a simple linear regression test can be used to determine the effect of X on Y.

Simple Regression Test

This test is a final test that determines the extent of X's direct influence on Y. This test is suitable for X and Y, where each variable has no additional groups and measures the scale value of each variable. In this case, the following hypothesis is proposed:

H0: There is no simultaneous effect of the variable "Understanding Awareness of Infrastructure Removal" on Students' Experience of Learning Comfort in Class.

H1: There is a simultaneous effect of the variable "Understanding Awareness of Infrastructure Removal" on Students' Experience of Learning Comfort in Class.

In the Simple Linear Regression test, the margin of error is 0.5% or .005, and the tables of interest are the F and T tables. In this case, F and T are compared with F and T. If F/T is greater than F/T, H0 is rejected and H1 is accepted. If the sig is below <.005, it is concluded that X has an effect on Y. Data processing was performed using SPSS, and the processed data was transformed data that met the assumption of normality. The following is the SPSS output, in the form of F and T:

ANOVA ^a					
Model		Sum Squares	of df	Mean Square F	Sig.
1	Regression	101.694	1	101.694	112.957 .000 ^b
	Residual	35.111	39	.900	
	Total	136.806	40		

a. Dependent Variable: SQRT_Y1

b. Predictors: (Constant), SQRT_X1

Based on the F_{Table} , it is known that the df regression is 1 and the residual is 39. In this case, interpretation is performed to obtain simultaneous significance. The interpretation results are as follows:

$$DF 1 - 39 = 4.09$$

After obtaining the F_{Table} , the next step is to compare the F_{Table} with the calculated F_{Table} . The F_{Table} is 4.09 and the calculated F_{Table} is 112.957. Based on the data, 112.957 is significantly greater than 4.09, meaning that the independent variables have a significant effect on the dependent variable simultaneously.

Coefficients ^a					
Model	Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta	t	Sig.
1	(Constant) .408	.285		1.432	.160
	SQRT_X1 .793	.075	.862	10.628	.000

a. Dependent Variable: SQRT_Y1

To draw conclusions, the first step is to determine the T_{Table} . T_{Table} is determined by the number of respondents (n) $df = n-2$. Based on the sample size, the T_{Table} value is 1.685 and the T_{Count} is 10.628. Therefore, it can be seen that $T_{Count} > T_{Table}$. Therefore, H_0 is rejected, and H_1 is rejected. Therefore, the variable Understanding and Awareness of Classroom Infrastructure Removal has a positive and significant effect on Students' Experience of Comfortable Learning in Class.

Discussion

This study aims to determine the effect of Understanding and Awareness of Classroom Infrastructure Removal on the Experience of Comfortable Learning in Class of 2024 E Unesa Educational Management Students.

Based on sequential data analysis, it was found that the statements in each indicator can describe the variables being studied. The validity test obtained R_{Count} for each statement in variables (X) and (Y) exceeded R_{Table} 0.308, according to $N-2 = 41-2 = 39$. In the Reliability Test, it is known that the data is consistent in a positive direction where Cronbach's Alpha (X) is .976 and (Y) is .963 is above the margin of error of 0.5% or .005. In the Normality Test, it is known that the initial data is not normal which is indicated by

the sig value of Shapiro-Wilk which is .001 which indicates the data is smaller than the margin of error of 0.5% or .005. However, to meet the requirements for data normality, data transformation is required through data distribution analysis on the graph. It is known that the data graph is bell-shaped and extends to the right indicating that the data is in the form of Moderate Negative Skewness, then the formula is $SQRT (K-X/Y)$, in this case, K is the highest value in each variable. It is known that the transformed data gets a final value of .152 indicating that the data is normal and ready to continue with the Parametric Linearity Test and Simple Regression. In the Linearity Test, both variables have a direct data relationship. Given a margin of error of 0.5% or .005, the data shows a significant value of .179. The Simple Regression Test shows that X has a simultaneous effect on Y through ($F_{count} 112.957 > F_{Table} 4.09$) and ($T_{count} 10.628 > T_{Table} 1.658$) and B .793 is greater than the constant .408 indicating that the positive and simultaneous effect of X on Y is accepted. The data shows a significant value of .000, which means there is a direct effect from both data tested.

Based on the description above and also the results of the study, it shows that each Unesa Educational Management Student Class of 2024 E has a relatively high understanding of each indicator as indicated by the data distribution that tends to widen to the right, meaning the data is large. Understanding of Awareness of the Removal of Classroom Facilities and Infrastructure directly influences Students' Learning Experience. In this case, a good understanding of the concept and indicators of awareness of the removal of classroom facilities and infrastructure turns out to have a direct influence on students' learning experience [12], [13]. Students were able to identify and understand various aspects related to the removal of facilities and infrastructure, including their functions, benefits, and impact on the learning environment. This demonstrated that students not only understood the theory but also experienced firsthand the changes in learning comfort resulting from the removal of facilities and infrastructure [14], [15], [16].

With this understanding, students were able to evaluate their learning situations, making their awareness of the importance of facilities and infrastructure a crucial factor in shaping the overall learning comfort experience. Therefore, it can be concluded that the greater the students' understanding of the removal of classroom facilities and infrastructure, the greater the level of learning comfort they experienced.

CONCLUSION

Fundamental Finding : This study found that understanding the awareness of infrastructure removal has a significant positive effect on the learning comfort experience of students, as evidenced by the results of the simple linear regression test, where $F_{Hitung} > F_{Tabel}$, $T_{Hitung} > T_{Tabel}$, and $B = 0.793$. **Implication :** The findings suggest that increasing students' awareness of the importance of classroom facilities and infrastructure plays a crucial role in enhancing their learning comfort, which can inform educational management practices aimed at improving the learning environment. **Limitation :**

However, the study is limited by its sample size of only 41 students from a single institution, which may not fully represent the broader student population. **Future Research** : Future studies could explore the impact of other factors, such as faculty support and teaching methods, on students' learning comfort, as well as consider larger and more diverse sample sizes across multiple universities to generalize the findings.

REFERENCES

- [1] N. Herawati, Tobari, and Missriani, 'Analisis Pengelolaan Sarana dan Prasarana Pendidikan di Sekolah Dasar Negeri 20 Tanjung Raja Kabupaten Ogan Ilir', *JIIP - J. Ilm. Ilmu Pendidik.*, vol. 4, no. 2, pp. 1684–1690, 2020, doi: 10.54371/jiip.v6i12.3297.
- [2] R. D. Syahputra and N. Aslami, 'Prinsip-Prinsip Utama Manajemen George R. Terry', *Manaj. Kreat. J.*, vol. 1, no. 3, pp. 52–60, 2023, doi: 10.55606/makreju.v1i3.1615.
- [3] M. H. Ginanjar, Rahman, and M. Jundullah, 'Manajemen sarana dan prasarana pendidikan dalam meningkatkan kualitas proses pembelajaran di SMA Al-Minhaj Bogor', *J. Manaj. Pendidik. Islam P*, vol. 6, no. 1, pp. 103–118, 2023, doi: 10.30868/im.v4i02.3693.
- [4] H. Naaz and S. Khalid, 'Relevance of Maslow's Hierarchy of Needs in the Education', *Int. J. Phys. Soc. Sci.*, vol. 13, no. 06, pp. 1–8, 2023.
- [5] Suhaila Nasywa A and I. Muthi, 'Kenyamanan Lingkungan Kelas dan Pengaruhnya terhadap Motivasi Siswa Sekolah Dasar', *Perspekt. J. Pendidik. dan Ilmu Bhs.*, vol. 3, no. 3, pp. 81–93, 2025, doi: 10.59059/perspektif.v3i3.2636.
- [6] S. Iskandar, P. S. Rosmana, L. Nabilah, Oktaviani, and Y. A. M. Tambunan, 'Penataan Ruang Kelas terhadap Hasil Belajar Siswa Sekolah Dasar', *J. Pendidik. Tambusai*, vol. 8, no. 2, pp. 25181–25189, 2024.
- [7] F. Rasyid, *Metodologi Penelitian Kualitatif dan Kuantitatif Teori, Metode, dan Praktek*, 1 St. Yogyakarta: IAIN Kediri Press, 2022.
- [8] G. A. F. Amalia, F. A. N. Rahma, T. C. Kuswarian, and H. Kusumaningrum, 'POAC dalam Transformasi Manajemen Sekolah : dari Teori ke Praktik', vol. 2, no. 1, pp. 133–147, 2025, doi: <https://doi.org/10.62383/hardik.v2i1.1024>.
- [9] R. Al Hakim, I. Mustika, and W. Yuliani, 'Validitas Dan Reliabilitas Angket Motivasi Berprestasi', *FOKUS (Kajian Bimbing. Konseling dalam Pendidikan)*, vol. 4, no. 4, pp. 263–268, 2021, doi: 10.22460/fokus.v4i4.7249.
- [10] B. J. Forester, A. I. A. Khater, M. W. Afgani, and M. Isnaini, 'Penelitian Kuantitatif : Uji Reliabilitas', *J. Pendidikan, Ilmu Sos. dan Pengabdi. Kpd. Masy.*, vol. 4, no. 3, pp. 1812–1820, 2024, [Online]. Available: <https://jurnal.permapendis-sumut.org/index.php/edusociety>
- [11] R. P. Sonjaya, F. R. Aliyya, S. Naufal, and M. Nursalman, 'Pengujian Prasyarat Analisis Data Nilai Kelas : Uji Normalitas dan Uji Homogenitas', *J. Pendidik. Tambusai*, vol. 9, no. 1, pp. 1627–1639, 2025.
- [12] R. Turner, "Familia and Classroom Culture," in *Greater Expectations*, Routledge, 2023, pp. 15–33. doi: 10.4324/9781032681184-2.
- [13] A. T. Capinding, "Teachers' Awareness of Students' Learning Situations During Distance Learning: Implications for Students' Academic Performance," *Int J Educ Method*, vol. 9, no. 1, pp. 75–93, Feb. 2023, doi: 10.12973/ijem.9.1.75.

- [14] D. B. Palipana, "To Heal the Body, We Also Must Comfort the Soul," in *The Art of Paediatric Medicine Beyond the Evidence Base*, Springer Nature Singapore, 2025, pp. 381–384. doi: 10.1007/978-981-96-7234-9_89.
- [15] H. H. McKiernan, "Increasing Attainment in the United States: Quality is about Learning – what Students Know, Understand and are able to do," in *Measuring the Value of a Postsecondary Education*, McGill-Queen's University Press, 2013, pp. 39–52. doi: 10.1515/9781553395119-005.
- [16] T. Perso and C. Hayward, "Understanding who your students are," in *Teaching Indigenous Students*, Routledge, 2020, pp. 27–56. doi: 10.4324/9781003117728-2.

*** Junivan (Corresponding Author)**

State University of Surabaya, Indonesia
Email: 24010714207@mhs.unesa.ac.id

Galih Rachmad Pratama

State University of Surabaya, Indonesia
Email: 24010714132@mhs.unesa.ac.id

Fitriya Helen Anggraeni

State University of Surabaya, Indonesia
Email: 24010714036@mhs.unesa.ac.id

Rosyadatus Sabilah

State University of Surabaya, Indonesia
Email: 24010714041@mhs.unesa.ac.id
